
Teaching in First-Year ICT Education in Australia: Research and
Practice

 Michael Morgan Judy Sheard Matthew Butler
 Monash University Monash University Monash University
 Australia Australia Australia
 michael.morgan@monash.edu judy.sheard@monash.edu matthew.butler@monash.edu

 Katrina Falkner Simon Amali Weerasinghe
 University of Adelaide University of Newcastle University of Adelaide
 Australia Australia Australia
katrina.falkner@adelaide.edu.au simon@newcastle.edu.au amali.weerasinghe@adelaide.edu.au

Abstract
This paper details current research and teaching practice
for first-year Information and Communications
Technology (ICT) students at Australian universities. The
project aims to record and disseminate good practice in
first-year ICT teaching in Australia. The aim of the paper
is to examine how academics are addressing the challenge
of engaging first-year ICT students in the learning
process. Two sources of data are used, a systematic
survey of research literature from the last five years and
detailed interviews of 30 academics involved in first-year
teaching duties. Academics from 25 Australian
universities represented a range of universities, including
six from the Go8 group, three from the ATN group, and
five from the IRU group. The paper highlights current
areas of research, any gaps in the research literature,
examples of current good teaching practices, and
recommendations for further research. .
 Keywords: First Year; Student Experience; Teaching.

1 Introduction
This paper presents a survey of current research

literature and current practice in Australian universities
for the teaching of first-year ICT students. It is motivated
by the unique challenges facing ICT educators as they
design and deliver educational experiences for first-year
students in the ICT domain. The challenges faced by ICT
students in the transition from secondary education are
evidenced by the relatively high rate of attrition in ICT
courses, a reduced engagement in on-campus learning
experiences and a perceived lack of relevance to some
potential student groups (Sheard, Carbone, & Hurst,
2010). In a search of the literature we found few
examples that addressed these issues in the ICT context
and in the Australian setting. While a lot of worthwhile
research is being conducted into specific teaching
practices in specific contexts, there is a need to properly
collate and review this research in order to drive change

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

in practice more broadly across the Australian Higher
Education sector.

 To investigate current research and practices in first-
year ICT courses in the Australian context, the authors
investigated six broad themes that together describe the
learning experience: “what we teach”, “where we teach”,
“how we teach”, “how we assess”, “learning support” and
“student support”. Only the “how we teach” theme is
presented in this paper due to space considerations.
Within this theme the different aspects of teaching are
discussed in relation to issues such as student
engagement, student retention, learning outcomes and
broadening the relevance of ICT courses to a wider range
of students.

2 Research Approach
The research team (the authors of this paper) designed

two phases for this project: a review of research literature
from the last five years, and interviews of academics
involved in the delivery of first-year programs to survey
current practice. A detailed description of the
methodology used in this project is reported in
Experiences of first-year students in ICT courses: good
teaching practices: Final Report: ICT student first year
experiences (http://www.acdict.edu.au/ALTA.htm).
Accordingly, a brief summary is presented below, with
focus placed on the “how we teach” theme.

In phase 1 a systematic review was conducted of the
literature from 2009 to 2014 in the area of computing
education. Keyword searches were carried out in Google
Scholar and the IEEE Xplore and ACM Digital Library
databases, along with manual searches of key computing
education journals and conference proceedings.

In phase 2, semi-structured phone interviews were
conducted with academics from Australian universities
between February and March 2014. Participants were
identified as key staff involved with the design and/or
delivery of ICT courses to first-year students. Thirty
academics from 25 Australian universities were
interviewed. These included six Group of Eight (Go8),
three Australian Technology Network (ATN), six
Innovative Research (IRU) universities and three
Regional University Network (RUN). The interviews
averaged 53 minutes, with detailed notes being taken.
They were audio recorded so that relevant comments
could be transcribed at a later time. The interview script

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

81

focused on six key themes and all interviewees were sent
the interview questions before the interview. Questions
were devised to elicit responses about initiatives in
teaching practice; for example, “Do you use any ‘novel’
teaching practices, such as peer instruction, flipped
classroom, students contributing to the learning of others,
e.g. through Peerwise, student seminars, etc?”. Follow up
questions on specific issues were also asked where
appropriate.

3 How we teach
The investigation of teaching in first-year ICT courses

in Australian universities was concerned with all aspects
of the design and delivery of university-level learning
experiences to first-year ICT students, and associated
supporting academic activities. We begin our
investigation of teaching in first-year ICT courses with a
review of the literature. This gives a broad perspective of
assessment in first-year ICT courses during the past five
years, highlighting Australian studies. Following this, an
analysis of our interviews of academics provides insights
into teaching practices in Australian courses.

3.1 Literature Perspectives in ICT Teaching
Practice

The systematic literature review identified 57 papers
that were considered relevant to the theme of “how we
teach”, grouped into four main topics:

1. theories and models of teaching and learning
2. approaches to teaching
3. cooperative and collaborative learning
4. social media and learning communities
All papers were set in the higher education sector and

in the ICT discipline. Most papers were focused on
teaching in first-year courses. Fifty papers (88%) dealt
with teaching programming, particularly introductory
programming. Eleven were Australian studies.

Theories and models of learning

A number of researchers have explored theoretical
bases for teaching and learning in the ICT discipline, all
in the context of introductory programming.

An Australian study by Mason and Cooper (2012)
investigated lecturers’ perceptions of the mental effort
required for different aspects of their programming units.
Interpreting the findings using cognitive load theory
(Sweller, 1999), the authors propose that many low-
performance students fail to learn due to cognitive
overload. Skudder and Luxton-Reilly (2014) reviewed the
use of worked examples in computer science. They
evaluated different types of worked examples in terms of
the cognitive load on the learner, and recommend
example-problem pairs and faded worked examples as
most suitable for novices.

A number of researchers have challenged the
‘programming gene’ view that people are either
inherently programmers or have great difficulty picking
up programming fundamentals. Robins (2010)
investigated possible reasons for the bimodal grade
distribution that some believe is typically found in
introductory programming courses. He proposes that this
is caused by the ‘learning edge momentum’ (LEM) effect
whereby success in learning a concept helps in learning

subsequent closely related concepts. In the programming
domain, where concepts are tightly integrated, the LEM
effect drives students to extreme learning outcomes.

A group of Australian researchers have explored the
learning of programming from a neo-Piagetian
perspective (Lister, 2011; Corney et al., 2012; Teague &
Lister, 2014). From a series of empirical studies they
propose that novice programming students pass through
neo-Piagetian stages of sensorimotor, preoperational, and
concrete operational before reaching the formal
operational stage where they can operate as competent
programmers. They recommend that introductory
programming teachers use a neo-Piagetian perspective in
their instruction where they consider the reasoning levels
of their students.

A couple of studies have used Dweck’s (2000)
‘mindset’ theory in introductory programming teaching
programs. Dweck identified that learners may have
‘fixed’ or ‘growth’ mindsets, which have implications for
their learning. Students with a growth mindset focus on
learning goals and continue to focus on learning, even
after failures. By contrast, students with a fixed mindset
focus on performance goals, and want to be seen as
achieving well at all times. Through several interventions
implemented in an introductory programming course,
Cutts et al. (2010) found that they were able to shift
students from fixed to growth mindsets, resulting in a
significant improvement in their learning. An intervention
program by Hanks et al. (2009) reported less success.

Dann et al. (2012) report an application of the theory
of ‘mediated transfer’ (Salomon & Perkins, 1988) in the
design of an introductory programming course. The
purpose was to aid students in transferring their
knowledge of programming concepts learnt in Alice 3 to
the Java context. Using this approach they found dramatic
improvement in students’ final exam performances.

A couple of papers report the use of Biggs’ model of
‘constructive alignment’ (Biggs, 1996) as a framework
for design of introductory programming units. Thota and
Whitfield (2010) and Australian researchers Cain and
Woodward (2012) describe the design of their courses
and present results from action research studies. They
discuss the implications of the use of constructive
alignment as a framework for course design.

A comprehensive review by Sorva (2013) summarises
the research on challenges faced by novice programmers
in understanding program execution. Based on findings,
he proposes that the ‘notional machine’ should be used
explicitly in introductory programming to help novices
understand the runtime dynamics of programs. Ma et al.
(2011) investigated novice students’ mental models of
programming concepts, finding that many held non-
viable mental models of key concepts. Through a
teaching approach using visualisation of program
execution they found that they could challenge and
change students’ misconceptions and help them develop a
better understanding of key concepts.

Approaches to teaching

Different approaches to teaching form a broad topic
encompassing the use of techniques, tools, technologies
and games in teaching first-year ICT courses.

CRPIT Volume 160 - Computing Education 2015

82

1. Teaching Techniques
A variety of teaching techniques for first-year ICT

courses were found, all but one in the context of
programming. These were typically introduced to
improve students’ skills and knowledge of a particular
learning outcome and/or to motivate and engage students
in the learning process.

Caspersen and Kölling (2009) present STREAM, a
programming process for novice programmers. This
process was derived from a stepwise improvement
framework that the authors developed by unifying current
good practices in software development. STREAM has
been used in two universities, and a study indicates that it
helped in the development of students’ software
development competencies.

Apiola, Lattu & Pasanen (2012) present CSLE
(Creative-Supporting Learning Environment), a
theoretical framework for designing a course to support
students’ creative activities. The framework was trialled
with a programming course using robotics, and an
evaluation indicated that students gained many creative
experiences during the course.

Hu, Winikoff & Cranefield (2012; 2013) describe an
approach to teaching introductory programming using the
concepts of ‘goals’ and ‘plans’. They propose a notation
and a programming process incorporating these concepts.
An evaluation of the approach using an experimental
method indicates a positive improvement in students’
performance in their programming exam.

Pears (2010) discusses the concept of program quality
and students’ conceptions of program quality. He
describes an approach used in an introductory computing
course designed to give students an understanding of
program quality. An assessment of student code produced
for their project work indicated a level of quality above
what is normally produced by first-year students.

Hertz and Jump (2013) present ‘program memory
traces’, a paper-based approach for code tracing that
models program execution in the computer’s memory. A
study of the use of this approach in an introductory
programming class showed improvement in students’
programming ability, decrease in dropout rates and
significant improvement in students’ grades.

The only example found outside the programming
context was NEMESIS (Marsa-Maestre et al., 2013), a
framework for generating scenarios for teaching network
and security systems. An evaluation of the framework
with a first-year Internet security systems course found
that the students and teachers were positive about the use
of the framework and the scenarios generated.

2. Games

Game-based learning and assessment tasks are often
used to motivate and engage students in the learning
process. Eagle and Barnes (2009) and Morazán (2010)
describe their use of games in introductory programming
courses. They report findings of studies that show that
learning activities based on games are useful tools to
interest and enthuse students in programming. However a
study of the use of mobile games by Kurkovsky (2013)
found mixed results in terms of student engagement and
motivation.

Bayzick et al. (2013) present ALE (AndEngine Lehigh
Extension), a platform for Android game development.
ALE emphasises code reading before students attempt
code writing. Experiences with using the platform in an
introductory programming course found that students
responded positively to the tool and wrote “compelling
mobile games in under 18 hours” (p.213).

3. Tools and technologies

A range of tools and technologies have been
developed or adapted for use in computing education, all
but one in the context of programming.

Anderson and Gavan (2012) report on the introduction
of LEGO Mindstorms NXT into an introductory
programming course. They found that students’ results on
assignment work and exams improved, and concluded
from a student evaluation that the activities were a
stimulating and engaging challenge for the students.
Apiola, Lattu & Pasanen (2010) also describe a
programming course that uses LEGO Mindstorms robotic
activities. On the basis of many positive student
comments during and after the course, the authors argue
that robots are powerful tools for motivating students.

These conclusions were not supported by a study by
McWorter and O’Connor (2009) who used the Motivated
Strategies for Learning questionnaire to assess the effect
of LEGO Mindstorms robotic activities on student
motivation in an introductory programming course. An
experimental study showed no difference in intrinsic
motivation between the students using LEGO and non-
LEGO activities, although responses to qualitative
questions indicated that some of the LEGO students
enjoyed the activities.

Summet et al. (2009) describe an introductory
programming course where each student is provided with
a pre-assembled robot which is used as the teaching
context. Results of a comparative study showed that the
robot class students gained significantly higher results
than the non-robot class students.

Daniels (2009) reports on an application of Nintendo
Wii Remote (wiimote) technology in an introductory
computer engineering and problem-solving class, and the
laboratory exercises designed to use the technology.
Following a study of the use of the technology, the
authors believe that the activities helped students achieve
the core learning objectives of the course and that student
engagement improved.

A common application of technology in computing
education is program or algorithm visualisation, which is
used to clarify and explain concepts.

Sorva, Karavirta & Malmi (2013) reviewed
visualisation systems designed to help introductory
computing students understand the runtime behaviour of
computer programs. Evaluations of the systems provided
indicate that they are generally useful in helping students
learning programming; however, the influence on learner
engagement is not clear.

Pears and Rogalli (2011) present an extension to the
widely used program visualisation tool Jeliot, where
students are able to receive and respond to Jeliot-
generated questions on their mobile phones. They
propose that this can be used interactively in a lecture,
providing an alternative to clicker technology.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

83

Australian researchers Heinsen Egan and McDonald
(2014) describe systems for visualising runtime memory
state and their integration into the SeeC system. This
system will be used initially in a first-year Operation
Systems course and the C Programming Language
course.

The only example of a tool or technology found
outside the programming context was an intelligent
tutoring system for learning Rapid Application
Development in a database environment. An Australian
study by Risco and Reye (2012) describes the Personal
Access Tutor (PAT) and an evaluation of the tool in a
first-year database course, showing that students and staff
found it easy to use and that it was beneficial for
students’ learning.

Cooperative and collaborative learning

Various teaching approaches have been developed to
encourage collaborative and cooperative work behaviour
in first-year computing students, often with the aim of
developing and fostering learning communities.

Hamer et al. (2012) provide a concise overview of
current research perspectives on learning communities by
exploring the concept of ‘contributing student pedagogy’
(CSP). The concept of CSP was developed by Collis and
Moonen (2005) who emphasise the process of learning by
engaging students as co-creators of learning resources.
CSP incorporates social constructivism in a practical
manner, combining both content learning and inter-
personal skills acquisition in a meaningful way (Hamer et
al., 2012, p 315). The learning benefits of engaging
learners as active co-creators of the learning experience
have been demonstrated in a number of subject domains.
Collaborative learning has been used as one of the
primary methods of implementing CSP as it requires
learners to externalise their understanding in order to
work with their peers.

Collaborative learning describes a range of practices
where students work in groups sharing knowledge or
work on a project. An example of a teaching approach
that uses collaborative learning is the ‘peer-led team
learning’ (PLTL) approach as described by Murphy et al.
(2011). PLTL involves a small group of students working
collaboratively to solve problems. Each group is led by an
undergraduate workshop leader who has been specially
trained in PLTL techniques. Murphy et al. claim that their
PLTL program was highly beneficial for peer leaders,
who also benefit from the program as they gain
confidence in themselves as computer scientists.

A couple of studies discuss collaborative learning
techniques used to increase engagement in lectures.
Simon et al. (2010) report on an application of peer
instruction (PI) using clicker technology in two
introductory programming units. PI is a teaching
technique that involves students answering a question on
a vote-discuss-revote model. An evaluation found that
students were generally very positive about this approach
and that the accuracy of the responses increased after a
follow-up discussion. The instructor reported value in
being able to identify concepts that students had not yet
mastered. Kothiyal et al. (2013) describe the
implementation of a similar active learning strategy,
think-pair-share (TPS), in a large introductory

programming class. TPS involves students working on an
instructor-led activity individually, then in pairs, and then
as a whole class. The authors report levels of student
engagement for each activity ranging from 70% to 90%.

Cooperative learning, a specific kind of collaborative
learning, is a teaching strategy requiring students to work
together to improve their understanding or to complete a
task. At an Australian university, Falkner and Palmer
(2009) integrated cooperative learning techniques into an
introductory computer science course, resulting in
increased class attendance, improved learning outcomes
and increased student motivation. Beck and Chizhik
(2013) report on the implementation of cooperative
learning in an introductory computing course and also
found an improvement in students’ exam results.

Lasserre and Szostak (2011) used a team-based
learning (TBL) approach, requiring students to work on
exercises in teams. The approach had a positive outcome
on student learning: 20% more students completed the
course and 20% more students passed the final exam.
Informal inspections of the final exam answers suggest
that students who learnt using the TBL approach had
increased confidence in writing programs. Another team-
based approach, reported by Hundhausen, Agrawal &
Agrawal (2013), involved peer-reviewing code with the
help of a moderator. A series of studies showed that
pedagogical code reviews (PCR) facilitated multi-level
discussions of code practices, providing opportunities to
develop soft skills in introductory computing courses.
The study also showed that the online implementation of
PCR was not as effective as the face-to-face PCR.

Many studies have investigated the effectiveness of
pair programming as a form of cooperative learning for
introductory programming students. Pair programming is
a programming technique where two people work
together to write a program, alternating between ‘driver’
and ‘navigator’ roles. Australian researchers Corney,
Teague & Thomas (2010) implemented pair
programming in an introductory programming course at
an Australian university and report that it was well
received by students. Wood et al. (2013) describe the use
of pair programming in the early weeks of an
introductory programming course. Students were paired
based on comparable levels of confidence, and it was
found that students with the lowest level of confidence
performed better working in a pair than individually.
Staff observed increased engagement, motivation and
performance. Radermacher, Walia & Rummelt (2012)
investigated the formation of pairs using Dehnadi’s
mental model consistency (MMC) test and found
evidence supporting the approach of matching students
according to their mental models. Salleh et al. (2010)
explored the effect of the personality trait of neuroticism
on pair programming and reported that students’
performance is not affected by different levels of
neuroticism. Zacharis (2011) and Edwards, Stewart &
Ferati (2010) investigated the effectiveness of online pair
programming for introductory programming students.
Zacharis found that students working online using pair
programming produced code of better quality and more
efficiently than students working individually. However,
Edwards, Stewart & Ferati found that students were less

CRPIT Volume 160 - Computing Education 2015

84

satisfied with the experience of online pair programming
than when co-located.

O’Grady (2012) reviewed the literature on the use of
problem-based learning (PBL). More than a third of the
59 cases reviewed were first-year computing courses, and
more than half of these were programming courses.
O’Grady found that both teachers and students were
largely positive about their PBL experiences. However,
he found that the adoption of PBL into computing courses
was largely ad hoc and random and concluded that if it is
to be successfully used then “motivations, objectives,
learning outcomes, and graduate outcomes must be
clearly defined” (p 10). Sancho-Thomas, Fuentes-
Fernández & Fernández-Manjón (2009) present the
NUCLEO e-learning framework, a PBL-based
environment for teaching computing courses. From the
results of three different studies on the use of this
framework the authors conclude that NUCLEO had a
positive influence in decreasing dropout rates, raising
exam pass rates, and improving team formation.

Social media and learning communities

Recently, various forms of social media (web 2.0)
have been used in education programs to encourage
collaborative work and the formation of learning
communities. Using social media is also seen as a way to
engage students in learning. A number of the
implementations of contributing student pedagogy
involve the use of social media (Hamer et al., 2011).

Pieterse and van Rooyen (2011) report the use of
Facebook in a large first-year computer science unit. A
closed Facebook group was set up as an informal online
discussion forum complementing a formal discussion
forum set up on the department website. Analysis of the
usage of the forums showed greater use of the formal
forum; however, there was more evidence of an online
community on the Facebook forum. The authors’
impressionistic view was that students were more
engaged than in previous offerings of the course.

Two studies investigated the use of blogs to support
learning communities. McDermott, Brindley & Eccleston
(2010) describe the use of blogs in a collaborative and
professional skills unit of a first-year computing course.
Students were required to use a blog for a reflective diary
and to post comments on other students’ blog postings.
The authors report that most students used their blogs in
an educationally constructive way and the postings gave
valuable insights into the students’ experiences.
Robertson (2011) describes the use of blogs in an
introductory interactive systems course. Students were
required to keep a design diary as a blog and to comment
on the blogs of other group members. Analysis of the
blogs gave insights into students’ self-directed learning
strategies and the support they provided to peers.

At an Australian university, Terrell, Richardson &
Hamilton (2011) required students to record their
reflections and learning activities on a blog. Analysis of
the blogs provided indications as to how well the course
objectives had been met. At another Australian
university, Guo and Stevens (2011) used wikis for
collaborative assignment work in an introductory
information systems course. From the results of a student
survey they provide recommendations for instructors who

are considering using web 2.0 technology in their
teaching programs.

Summary

There is a significant body of literature devoted to the
theories and models of learning, various approaches to
teaching, cooperative and collaborative learning
techniques, and the use of social media. These were
frequently discussed in terms of influences on student
learning, motivation, and engagement.

A large proportion of this material was highly focused
on the programming domain and only a small portion
related specifically to the Australian context.

3.2 Current Practice in Australia

The interviews of Australian academics sought
information about teaching practices in first-year ICT
courses. The responses gave insights into current teaching
practices and issues faced by teaching staff. Thematic
analysis was used to extract and code the responses and to
identify and define the major issues raised. The responses
are discussed below under the main topics that were
identified from the analysis of the interview data:
“approaches to teaching”, “cooperative and collaborative
learning” and “social media and learning communities”.
These broadly align with three of the four topics from the
literature search. An underlying theme across all topics is
the response of academics to the perceived lack of student
engagement with traditional methods of on-campus
course delivery in universities, in particular the traditional
lecture model of content delivery.

Approaches to teaching

A common element in this topic was the aim of
increasing learner engagement through converting the
learning experience from a passive activity of absorbing
information to an active process whereby the learner must
engage and process the content in order to construct
meaning from the experience. The most dominant
concerns regarding teaching were the issues involving
lecture delivery and responses to the lack of student
engagement with learning in this space.

Several interviewees raised the issue of lack of student
attendance at lectures, and were making attempts to
address this. For example, interviewee U7b indicated
with regard to their lectures:

“Deliberate change to improve engagement. ... A
complete change of staff, a complete change of pedagogy,
a restructure of the delivery approach, etc. ... Because we
found that the engagement and therefore the attendance
and the interest ... is dropping off with this sort of
generation. We’ve made a conscious decision to put our
brightest performers, you might say, on first-year units.”

In another example interviewee U15b discussed the
rationale for the introduction of clicker technology into
several first-year units:

“The other thing that is impacting the first-years is the
use of clicker technology, ... And that has been in part to
try and improve the lecture experience and also get
attendance back up. You know that lecture attendance is
the first thing that kind of goes when students are under
pressure so we try to be quite compelling in having them

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

85

in there and them knowing why it is important and what
they can get from it.”

The consensus of comments indicated that it was
important to provide students with an engaging and active
lecture experience in order to motivate them to attend and
participate in learning.

Lecture approaches that focus on transmitting content
were seen as problematic since other sources of high
quality information were available online in formats that
could be accessed more conveniently off campus. A
number of high quality MOOCs have focused on
computing and ICT and are an example of the increased
availability of resources of this type. The strengths of on-
campus delivery were seen as being the ability to
encourage active student participation, the responsiveness
of lecturers in providing quality student feedback on
progress, the social learning context involving their peers,
and personalised feedback to students. Recently, lecture
techniques and pedagogies have been developing to take
advantage of these strengths.

One example of this process is the technique of the
flipped classroom (Porter, Bailey-Lee & Simon, 2013;
Simon et al., 2013) incorporating the use of clicker
technologies. Interviewees U15a and U15b described the
use of flipped classroom techniques and clicker
technology specifically targeted at first-year students:

“Clickers were implemented...Pre-reading is expected.
The way those lectures work is that there will be a quick
summary and then there will be some sort of question
posed to the class, they tend to discuss it in small groups,
.... Students will get into small groups to discuss it and
then they re-answer and then you can get a sense for how
their understanding is shifting through a bit of discussion
and prompting.”

The aim of these techniques is to get students to
actively engage with the fundamental concepts through a
process of discussion and responses undertaken in
conjunction with their peers. This also allows the lecturer
to better judge the current state of understanding
demonstrated by the class through their electronically
submitted responses.

Interviewees U15a and U15b went on to indicate that
the Faculty involved intended to expand the flipped
classroom and clickers program further:

“What we found, which was actually quite good, is
that it brought the tail up a bit. So we thought it might
have a bit of an impact on students at risk ... ” (U15b)

“It encourages them to actually attend. We’re starting
to have more units using clickers this semester.” (U15a)

However, other interviewees indicated that they had
implemented some components of the flipped classroom
model but that it had proved problematic to motivate
students to do the required pre-reading, so the approach
was discarded. Further research is required on the impact
of these techniques and technologies in the ICT domain
and in the Australian context.

A variety of other approaches are used in lectures to
engage students in learning experiences. Interviewee U24
uses live code writing and demonstrations to increase the
interactivity of lectures. Interviewee U12 uses online
quizzes within Moodle:

“Students can either use their phone, their computer
or the tablet I provide to ensure that everyone has access.

It’s an online quiz so they get instant feedback as to how
they’ve gone and I get the individualised feedback so I
know who’s struggling”.

Role-playing is a novel approach used by two
lecturers. Interviewee U23 explains:

“I do a lot of role play in lectures to try to reinforce
some of the concepts. So I have people acting out
variables and loops and things like that. It’s a bit of a
giggle, but students who struggle initially to try to
understand these concepts seem to find that really helps”.

Interviewee U23 shared his experience on having
guest lectures in his course:

“We have guest lecturers every second week in the
subject and try to mix them up across different fields so
you get very engaging, inspiring people. ... We’re very
selective about who we approach to do [the lecture] and
students love it. Of course we make that examinable so
they actually have to come along to the guest lectures.”

Despite many efforts to improve the lecture
experience, some interviewees expressed strong negative
views about it. Interviewee U5 encapsulates these ideas:

“I think the future of the lecture is in significant
danger... students get very little value from lectures. The
attendance is poor, the interaction is virtually all one way
and today’s students really don’t see it as any benefit
whatsoever... and the students are far busier now than
they were 20 years ago when university may have been a
priority. University isn’t a priority anymore. The majority
of our domestic students are working at least 20 hours a
week and they see uni having to fit around them, not the
other way round. I understand the challenges and there
does have to be a nice balance but the changes have been
quite dramatic and the universities are still teaching to
the students as they were 30 years ago when students
would come to class.”

Although discussion of how teaching is approached
was focused on the lecture environment during the
interviews, a variety of other teaching techniques were
mentioned that were appropriate for tutorial classes or
online learning, often involving the use of specific tools
and technologies. The motivation for these was to engage
students in interesting and meaningful experiences.

Interviewee U9 explains how she focuses on students’
interest to increase engagement:

“Every single week we have two or three 3-minute
oral presentations by students on any topic of interest to
them. Other students give feedback, because we’re
scaffolding their learning about how to present at the end
of the semester. And that’s great fun. They don’t get
marked on it; it’ s formative”.

Interviewee U6 argues that project work needs to be
authentic to promote student engagement:

“The students engage in projects that are fascinating
and do authentic tasks of real world challenges and
coming up and creating something new. Not just learning
by rote.”

Similarly, interviewee U20 stresses the importance of
providing opportunities to do meaningful and motivating
work in his programming unit.

Interviewee U7b discusses the use of visual
programming techniques based on a Stanford University
model in which students learn to program by moving
objects around a screen in a game-like environment in

CRPIT Volume 160 - Computing Education 2015

86

which the effects of the code and its successful execution
are immediately apparent to the novice programmer.

“The ladybug is very visual. The aim is to run the code
and see the ladybug move in the correct way instead of
the old way of running the code and not getting an error
and maybe producing a report. What you are seeing is a
visual representation of your result. Quite a bit different
to the old pedagogy.”

Interviewee U10 describes the media computation
introductory programming technique where students learn
to program using the manipulation of images and sounds
as the context for learning about programming.

“Media computation [is] really new. Introduced three
years ago, [as a] first course for people who do not know
anything about computing. People learn to program by
manipulating images and sounds.” Part of the rationale
for this change was wider audience appeal, including for
non-ICT students. So far, results have been positive.

“The students do seem to be more engaged, they are
more enthusiastic, they are attending more classes, so we
are taking that as a win enough at the moment.”

Again there is a sense that there is not really an
improvement at the higher end of student performance
but more engagement at the lower end, with a possible
consequence that more students are able to pass the
introductory programming unit.

There were several comments in the interviews
regarding the creation and use of educational resources.
Interviewee U7a described an open educational resources
(OER) scheme. This was a learning object repository of
submitted student work that was created and maintained
on a formal basis.

“Previous students’ work can be referenced, can be
extended, can be reused, and can be enhanced. That
means the currently enrolled students can make use of
previous students’ work for improvements, for extensions
and for some other kinds of extra work; however, students
need to follow the OER scheme.”

The aim was to build up a rich repository of student-
generated content, and participation was voluntary.

Another interviewee, U15a, described an e-publishing
initiative called Alexandria, based on WordPress
infrastructure. The aim was to create dynamic and
interactive learning objects that could be distributed on a
variety of platforms. This is a type of e-publishing with
interactive elements embedded, such as quizzes, applets
and discussion forums.

“We have another project taking [the] online learning
repository type thing and creating kind of learning
modules. Again trying to do them in a more dynamic way,
so short videos with interactive applets students can
experiment with and stuff.”

Cooperative and collaborative teaching

This topic is concerned with teaching approaches that
involve students in collaborative or cooperative learning
activities. Cooperative and collaborative learning
activities were highlighted in the interviews as examples
of active learning pedagogies for first-year students.
Interviewee U10 explains:

“We do a lot of student contribution work in first year.
... it is very much based upon peer assessment and peer
review, peers working together in collaboration. Our

curriculum was restructured about 4 years ago now. We
completely rebuilt the first-year curriculum around
collaborative learning.”

The aim here is to recast learning from being an
isolated and solitary activity to being an intensely social
activity where students are engaged and motivated by
negotiating shared goals, responsibilities, and cooperative
tasks involving their peers. The social nature of this
learning experience and the intense engagement is
intended to reduce the social isolation of students, which
has been shown to be one of the significant risk factors
for students dropping out of courses. Interviewee U10
elaborates: “In the collaborative workshop sessions
students do a lot of very active learning, they have little
mini-lectures, that are interjected between collaborative
learning activities where the students are often asked to
build upon each others’ work, to share each others’ work
and do peer review and peer assessment.”

Here the aim is to foster a range of skills related to the
ability to plan solutions, negotiate roles, and evaluate
progress, rather than just to absorb specific information.
These social skills are deemed to be important in the
context of future employment in the ICT field and tend to
produce a more engaging learning experience.

According to interviewee U10, however, these
collaborative learning techniques require a range of
specific teaching techniques in order to ensure their
successful implementation.

“They are very heavily guided through the workshops
... all face-to-face, so we have quite a lot of workshop
supervisors who work with the groups. So the workshop
supervisors go through training every year to sort of
guide them into how to work with the student groups.”

Further research is needed to formally describe and
evaluate the impact of these techniques in the Australian
ICT context.

A related active learning pedagogy is focused on
problem-solving skills and in setting the frame of
reference for learning activities in authentic problem
contexts relevant to the ICT domain. Interviewee U9
provides an example:

“We have got peer collaboration within classes and
some topics use partnership learning. And there is a
student focus of what is going to be taught. There is a
topic in which students undertake an external challenge
of a real-world scenario for Engineers without borders ...
our Computer Science, Engineering, and our ICT
students participate in that, where they design real-world
solutions for ICT problems in third-world countries. They
design their own solution and it is incredible what they do
in first year.”

The innovation in this example is that this experience
is targeted at first-year students in a professional skills
unit rather than being delivered in a capstone unit in the
third year. Students are motivated to gain skills as they go
to complete the current project, rather than completing a
series of units to gain a set of decontextualised
prerequisite skills to be used at a later time.

Social media and learning communities

This topic is concerned with use of social media for
learning activities in first-year ICT. Interviewee U24
describes the use of social networking software UCROO

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

87

to support learning communities. UCROO is a social
networking application for Australian universities only,
and was developed by post-graduate students from
Deakin University (which is not the university of
interviewee U24). It is an educational social networking
site based on Facebook.

“Looks a lot like Facebook, acts a lot like Facebook.
The students are very familiar with it. They know how to
use it immediately. It is unit specific, so you set a unit up
in this. It definitely has an educational focus because you
can set up assessment dates and the like. Each unit has a
wall on which you can post, do a poll, ask questions, put
up a file, link to a web page. But students can, too, so you
get connections like you get Facebook friends. Everyone
who is your friend, you have one common wall that you
can see.”

UCROO has a rich tool set of features to promote
social connections and to allow posting of news and
resources. This is very different from the limited tool set
available in the current generation of LMSs. According to
interviewee U24 the software was:

“Introduced 18 months, 2 years ago, to the
introductory programming class, because they of course
are a really quiet class because they are programmers,
they tend to be quiet. They tend to be not so out there
socially, and I also wanted my external students to get to
know my internal students and for my internal students to
be reminded that the class does not only consist of them.”

The initial results have been positive:
“It has been magnificent, students have loved it and I

have had an enormous amount of student interactivity as
in [...] between students on UCROO each time I have
used it. ... it actually really surprised me how these
people just took to it like ducks would take to water.”

The lecturer is also starting to build social networking
tools more broadly into the unit, such as Skype for
external presentations and web-based clicker systems for
in-class polling.

However, several interviewees cautioned against the
use of social media. As U4 explains:

“It is difficult to encourage students to use it because
they think this is just another burden on what they’re
required to do.”

Interviewee U7b remarked:
“The university is moving towards more social media

but I think there are a few issues in using that extensively
in teaching because students don’t really distinguish
between whether the social media contact is social or
educational. It kind of blurs the boundaries for them.”

The use of social networking has shown the potential
to increase peer feedback, and to integrate online and on-
campus students if implemented correctly. Further
research and evaluation is required on the impact of
social networking techniques on the ICT domain.

4 Discussion
Our analysis of recent literature shows that while there

is a significant body of literature devoted to teaching in
the first year of ICT courses, much of this literature is
focused in the programming context. We propose that
further research is needed to explore other aspects of the
first-year ICT curriculum to gain a better understanding
of the first-year ICT student experience.

The topics that emerged from an analysis of the
interview data broadly align with those found in the
literature. Most interviewees highlighted rapid changes in
traditional methods of on-campus course delivery due to a
perceived lack of student engagement, in particular
changes to the lecture format and to the balance between
lectures and practical labs. Practices such as active
learning approaches, flipped classrooms, peer,
cooperative, and collaborative techniques, and problem-
based learning were frequently discussed, along with the
integration of social networking tools to support the
formation of learning communities. Again, the focus was
predominantly on the programming context, so we
propose that other areas of the first-year curriculum and
the integration of the curriculum of the whole first year
merit future consideration.

Finally there is a need to formally evaluate the effects
of many of the innovative teaching practices described in
this paper. Substantial work has been documented on
efforts to improve the relevance and appeal of the ICT
curriculum to a wider range of students, including non-
ICT students, using social media, visual programming,
and problem-based learning techniques. In many cases
the initial reports of the techniques are positive, but more
rigorous evaluation is required to support evidence-based
decision-making on which techniques should be further
developed to drive improvements in the first-year
learning experience of ICT students.

5 Conclusion and future work
From this study we have documented a number of

initiatives aimed at increasing ICT student engagement in
the learning process. The study raises a number of key
research areas that need further investigation. There is a
clear need for more formal evaluations of the effects of
these teaching initiatives in the Australian ICT context
and for the collation of examples of good practice for
wider dissemination. While initial results in many cases
are positive, more evidence is required to justify sector-
wide change. The amount of published literature on
programming education also highlights a need to conduct
research in other areas of ICT curriculum, to ensure a
better overall first-year experience for ICT students.

6 Acknowledgements
This project was undertaken with the support of the

Australian Council of Deans of Information and
Communication Technology through the ALTA Good
Practice Reports Commissioned for 2013–2014 grant
scheme (http://www.acdict.edu.au/ALTA.htm).

The project team would like to acknowledge the work
of Dr Beth Cook who worked as a research assistant to
conduct the interviews and to prepare the detailed
interview notes.

7 References
Anderson, M., & Gavan, C. (2012). Engaging

undergraduate programming students: experiences
using LEGO Mindstorms NXT. 13th Conference on
Information Technology Education, 139-144.

Apiola, M., Lattu, M., & Pasanen, T. A. (2010).
Creativity and intrinsic motivation in computer science
education    : experimenting with robots. 15th

CRPIT Volume 160 - Computing Education 2015

88

Conference on Innovation and Technology in
Computer Science Education, 199-203.

Apiola, M., Lattu, M., & Pasanen, T. A. (2012).
Creativity-supporting learning environment – CSLE.
ACM Transactions on Computing Education, 12(3), 11.

Bayzick, J., Askins, B., Kalafut, S., & Spear, M. (2013).
Reading mobile games throughout the curriculum. 44th
ACM Technical Symposium on Computer Science
Education, 209-214.

Beck, L., & Chizhik, A. (2013). Cooperative learning
instructional methods for CS1    : design,
implementation, and evaluation. ACM Transactions on
Computing Education, 13(3), 10.

Biggs, J. (1996). Enhancing teaching through
constructive alignment, Higher Education, 32(3), 347-
364.

Cain, A., & Woodward, C. J. (2012). Toward
constructive alignment with portfolio assessment for
introductory programming. IEEE International
Conference on Teaching, Assessment, and Learning for
Engineering 2012, H1B-11.

Caspersen, M. E., & Kolling, M. (2009). STREAM: A
first programming process. ACM Transactions on
Computing Education, 9(1), 4.

Collis, B. and Moonen, J. (2005). An On-Going Journey:
Technology as a Learning Workbench, University of
Twente, Enschede, The Netherlands.

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012).
Some empirical results for neo-Piagetian reasoning in
novice programmers and the relationship to code
explanation questions. 14th Australasian Computing
Education Conference, 77-86.

Corney, M., Teague, D., & Thomas, R. N. (2010).
Engaging students in programming. 12th Australasian
Computing Education Conference, 63-72.

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., & Saffrey,
P. (2010). Manipulating mindset to positively influence
introductory programming performance. 41st ACM
Technical Symposium on Computer Science Education,
431-435.

Daniels, T. E. (2009). Integrating engagement and first
year problem solving using game controller
technology. 39th IEEE Frontiers in Education
Conference, 2009, 1-6.

Dann, W., Cosgrove, D., Slater, D., Culyba, D., &
Cooper, S. (2012). Mediated transfer: Alice 3 to Java.
43rd ACM Technical Symposium on Computer Science
Education, 141-146.

Dweck, C. S. (2000). Self-theories: Their role in
motivation, personality, and development. Psychology
Press.

Eagle, M., & Barnes, T. (2009). Evaluation of a game-
based lab assignment. 4th International Conference on
Foundations of Digital Games, 64-70.

Edwards, R. L., Stewart, J. K., & Ferati, M. (2010).
Assessing the effectiveness of distributed pair
programming for an online informatics curriculum.
ACM Inroads, 1(1), 48-54.

Falkner, K., & Palmer, E. (2009). Developing authentic
problem solving skills in introductory computing
classes. ACM SIGCSE Bulletin, 41(1), 4-8.

Guo, Z., & Stevens, K. J. (2011). Factors influencing
perceived usefulness of wikis for group collaborative
learning by first year students. Australasian Journal of
Educational Technology, 27(2), 221-242.

Hamer, J., Luxton-Reilly, A., Purchase, H. C., & Sheard,
J. (2011). Tools for contributing student learning. ACM
Inroads, 2(2), 78-91.

Hamer, J., Sheard, J., Purchase, H., & Luxton-Reilly, A.
(2012). Contributing student pedagogy. Computer
Science Education, 22(4), 315-318.

Hanks, B., Murphy, L., Simon, B., McCauley, R., &
Zander, C. (2009). CS1 students speak: advice for
students by students. ACM SIGCSE Bulletin, 41(1), 19-
23.

Heinsen Egan, M., & McDonald, C. (2014). Program
visualization and explanation for novice C
programmers. 16th Australasian Computing Education
Conference, 51-57.

Hertz, M., & Jump, M. (2013). Trace-based teaching in
early programming courses. 44th ACM Technical
Symposium on Computer Science Education, 561-566.

Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching
novice programming using goals and plans in a visual
notation. 14th Australasian Computing Education
Conference, 43-52.

Hu, M., Winikoff, M., & Cranefield, S. (2013). A process
for novice programming using goals and plans. 15th
Conference on Innovation and Technology in
Computer Science Education, 3-12.

Hundhausen, C. D., Agrawal, A., & Agrawal, P. (2013).
Talking about code: integrating pedagogical code
reviews into early computing courses. ACM
Transactions on Computing Education, 13(3), 14.

Kothiyal, A., Majumdar, R., Murthy, S., & Iyer, S.
(2013). Effect of think-pair-share in a large CS1 class:
83% sustained engagement. 9th International
Computing Education Research Conference, 137-144.

Kurkovsky, S. (2013). Mobile game development:
improving student engagement and motivation in
introductory computing courses. Computer Science
Education, 23(2), 138-157.

Lasserre, P., & Szostak, C. (2011). Effects of team-based
learning on a CS1 course. 16th Conference on
Innovation and Technology in Computer Science
Education, 133-137.

Lister, R. (2011). Concrete and other neo-Piagetian forms
of reasoning in the novice programmer. 13th
Australasian Computing Education Conference, 9-18.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011).
Investigating and improving the models of
programming concepts held by novice programmers.
Computer Science Education, 21(1), 57-80.

Marsa-Maestre, I., De La Hoz, E., Gimenez-Guzman, J.
M., & Lopez-Carmona, M. A. (2013). Design and
evaluation of a learning environment to effectively

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

89

provide network security skills. Computers &
Education, 69, 225-236.

Mason, R., & Cooper, G. (2012). Why the bottom 10 %
just can’t do it – mental effort measures and
implications for introductory programming courses.
14th Australasian Computing Education Conference,
187-196.

McDermott, R., Brindley, G., & Eccleston, G. (2010).
Developing tools to encourage reflection in first year
students blogs. 15th Conference on Innovation and
Technology in Computer Science Education, 147-151.

McWhorter, W. I., & O’Connor, B. C. (2009). Do
LEGO® Mindstorms® motivate students in CS1?
ACM SIGCSE Bulletin, 41(1), 438-442.

Morazán, M. T. (2010). Functional video games in the
CS1 classroom. Trends in Functional Programming,
166-183. Springer Berlin Heidelberg.

Murphy, C., Powell, R., Parton, K., & Cannon, A. (2011).
Lessons learned from a PLTL-CS program. 42nd ACM
Technical Symposium on Computer Science Education,
207-212.

O’Grady, M. J. (2012). Practical problem-based learning
in computing education. ACM Transactions on
Computing Education, 12(3), 10.

Pears, A. (2010). Conveying conceptions of quality
through instruction. 7th International Conference on
the Quality of Information and Communications
Technology, 7-14.

Pears, A., & Rogalli, M. (2011). mJeliot: A tool for
enhanced interactivity in programming instruction.
11th Koli Calling International Conference on
Computing Education Research, 16-22.

Pieterse, V., & van Rooyen, I. J. (2011). Student
discussion forums: what is in it for them? Computer
Science Education Research Conference, 59-70. Open
Universiteit, Heerlen.

Porter, L., Bailey-Lee, C., & Simon, B. (2013). Halving
fail rates using peer instruction: a study of four
computer science courses. 44th ACM Technical
Symposium on Computer Science Education, 177-182.

Radermacher, A., Walia, G., & Rummelt, R. (2012).
Improving student learning outcomes with pair
programming. 9th International Computing Education
Research Conference, 87-92.

Risco, S., & Reye, J. (2012). Evaluation of an intelligent
tutoring system used for teaching RAD in a database
environment. 14th Australasian Computing Education
Conference, 131-140).

Robertson, J. (2011). The educational affordances of
blogs for self-directed learning. Computers &
Education, 57 (2), 1628-1644.

Robins, A. (2010). Learning edge momentum: a new
account of outcomes in CS1. Computer Science
Education, 20(1), 37-71.

Salleh, N., Mendes, E., Grundy, J., & Burch, G. S. J.
(2010). The effects of neuroticism on pair
programming: an empirical study in the higher
education context. 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and
Measurement, 22.

Salomon, G., & Perkins, D. (1988). Teaching for transfer.
Educational leadership, 46(1), 22-32.

Sancho-Thomas, P., Fuentes-Fernández, R., &
Fernández-Manjón, B. (2009). Learning teamwork
skills in university programming courses. Computers &
Education, 53, 517-531.

Sheard, J., Carbone, A., & Hurst, A. J. (2010). Student
engagement in first year of an ICT degree: staff and
student perceptions. Computer Science Education,
20(1), 1-16.

Simon, B., Esper, S., Porter, L., & Cutts, Q. (2013).
Student experience in a student-centered peer
instruction classroom. 9th International Computing
Education Research Conference, 129-136.

Simon, B., Kohanfars, M., Lee, J., Tamayo, K., & Cutts,
Q. (2010). Experience report: peer instruction in
introductory computing. 41st ACM Technical
Symposium on Computer Science Education, 341-345.

Skudder, B., & Luxton-Reilly, A. (2014). Worked
examples in computer science. 16th Australasian
Computing Education Conference, 59-64.

Sorva, J. (2013). Notional machines and introductory
programming education. ACM Transactions on
Computing Education, 13(2), 8.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of
generic program visualization systems for introductory
programming education. ACM Transactions on
Computing Education, 13(4), 15.

Summet, J., Kumar, D., Hara, K. O., Walker, D., Ni, L.,
Blank, D., & Balch, T. (2009). Personalizing CS1 with
robots. ACM SIGCSE Bulletin, 41(1), 433-437.

Sweller, J. (1999). Instructional Design in Technical
Areas. Melbourne, Australia, ACER Press.

Teague, D., & Lister, R. (2014). Longitudinal think aloud
study of a novice programmer. 16th Australasian
Computing Education Conference, 41-50).

Terrell, J., Richardson, J., & Hamilton, M. (2011). Using
web 2.0 to teach web 2.0: a case study in aligning
teaching, learning and assessment with professional
practice. Australasian Journal of Educational
Technology, 27(5), 846-862.

Thota, N., & Whitfield, R. (2010). Holistic approach to
learning and teaching introductory object-oriented
programming. Computer Science Education, 20(2),
103-127.

Wood, K., Parsons, D., Gasson, J., & Haden, P. (2013).
It’s never too early    : pair programming in CS1. 15th
Australasian Computing Education Conference, 13-21.

Zacharis, N. Z. (2011). Measuring the effects of virtual
pair programming in an introductory programming
Java course. IEEE Transactions on Education, 54(1),
168-170.

CRPIT Volume 160 - Computing Education 2015

90

